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ON ANTIPLANE DEFORMATION FOR MATERIALS WHICH
DO NOT OBEY HOOKE'S LAW

V. L. DOBROVOL'SKY

Institute of Mechanics, Academy of Sciences of the U.S.S.R., Moscow

Abstract-In the present paper the problems of antiplane deformation for a semiplane with two notches,
for a semiplane with a hole, for a semiplane with periodically repeated notches and for a strip with two notches
are investigated theoretically in the case of a particular nonlinear stress-strain dependence.

For linearization of equations we apply Chaplygin's transformation as Sokolovsky [5] has done it. The
solutions are illustrated by numerical computations and plots.

1. INTRODUCTION

THE problems concerning prismatical bodies with longitudinal notches subjected to
shear forces (i.e. the problems of so-called antiplane deformation) have drawn the attention
of investigators in the case when the material of the body does not follow Hooke's law.
This is explained by the fact that near notches the state of stress and strain taking place
for antiplane deformation satisfactorily approximates that occuring under twisting of the
prismatical' body of corresponding section.

A number of elastic-plastic problems were solved theoretically. The problems for an
angle with the flanges of equal width and for a plane with a circular hole were solved by
Trefftz [1] in 1925. A method of solving the problems of prismatical bodies of polygonal
cross section was proposed by Galin [2] in 1944. In 1957, Huh and McClintock [3] inves
tigated the state of stress and strain for the semiplane with a V-notch. In 1962, Cherepanov
[4] proposed a method of solution for the class of problems when the boundary consists
of the straight and curved parts of lines, the straight parts being free of loading and the
curvilinear arcs being completely enveloped by the plastic zone.

Further, the problems of antiplane deformation were considered for nonlinear
elastic materials. In 1959, Sokolovsky [5] suggested a method for solving the problems
of a special nonlinear 'stress-deformation' law, introduced by him in 1950, which assumed
the solution of the corresponding problem in the case of Hooke's law being known. At
the same time the problem of the motion of a plastic mass between two elliptical tubes
was solved. The problem for the semiplane with an elliptical notch was solved by
Sokolovsky [6] in 1962. In 1961, Neuber [7] studied a number of problems applying the
same deformation law [5] but another method of solution.

Below, some problems for more complicated contours of cross section are solved
by Sokolovsky's method [5]. The solutions obtained are illustrated by computations
and plots. The calculations were carried out with the aid of a high-speed computer at
the Computer Center of the Academy of Sciences of the U.S.S.R.

2. FORMULATION OF THE PROBLEM
We consider prismatic bodies, along whose generators uniform shear tractions are

applied. The coordinate system is chosen in such a way that the x- and y-axes are in
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one of the cross sections of the prism. Only the component w of the displacement vector
directed along the generator of the prism is different from zero. Nonvanishing components
of the stress tensor 'xz and 'YZ are denoted in the sequel by 'x and TV' respectively. The
quantities w, 'x and 'y depend upon the two coordinates x and y. In this case, only one
of the equilibrium equations is not satisfied identically, namely

The nonvanishing components of the deformation tensor Yxz and y)'z denoted below by
'/'x and )'y, respectively, are related to the displacement vector component w by the expres
sions

hv
")'" --~""'Ix. - ~ ,

ex

If all these assumptions are fulfilled, one says that the body is in a state of 'antiplanc
deformation '.

The relations between the stress tensor components and the strain tensor components
are

". __I
IX - -rx ',

where, and ~' are determined by the formulae

.,2 = 'y2 + .,2
l' x J'y.

(3)

(4\

(5)

The deformation law, = ,(y) is assumed in the form

2k}'
T=-~-----,

)[1 +(2my)2j'

where k and m are parameters determining the mechanical behavior of the material;
they should be taken from the experimental data. The curve, y has an initial Young's
modulus of 2k and a horizontal asymptote having a distance kim from the y axis. If
m = 0 Hooke's law holds, and if k --7 oc and kim --7 const. we have perfect plasticity.
The dependencies, vs. l' for different magnitudes of k with constant ratio kim are given
in Fig. 1.
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3. TRANSFORMATION OF EQUATIONS
The stress function t/!(x, y) is introduced by the formulae

197

at/!
Cv = --;-,

. uX
(6)

such that the equation of equilibrium (1) is satisfied, and after introducing the function

<P = kw

the fundamental system of equations takes the form

(7)

o<p 'Lx

ox = ~[1-(m'L/k)2]'

ot/!-::;- = - cy,
ox

In the case the boundary condition is

o<p cy

oy = ~[l-(m!/Wi'

ot/!ay = 'Lx-

(8)

ljJ(x, y) = 0, (9)

(11)

as the stress vector touches the boundary contour, i.e. along the contour the following
relation holds

!xd.V-cydx = 0. (10)

Further, the equations are linearized by the method similar to Chaplygin's method in
the problem of fluid jets. For this purpose the angle e, formed by the vector! and the
x-axis, and an auxillary quantity t, which is the modulus of the stress vector in the case
of Hooke's law, (m = 0), are introduced. The quantity t is connected with! by the relation

t
!=---

1+ (nt)2'

where

n
m

2k
and nt < 1. (12)

We introduce the dimensionless variables

, xx =_.
l' 1>' ,I,' IjJ

'I' = kl'
(13)

,t ,'L
t = k' 'L k' n' = nk

(l is a typical length) and primes will be omitted below. With the aid of the complex
variables

OJ = <p + it/!,

the fundamental equations become

z x+iy (4)

(15)
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dw_
iOd( = te . (16)

Here the variable ( = ~ + il] corresponds to the case n = 0, i.e. to Hooke's law.
The system of equations (15), (16), analogous to the equations of gas dynamics, permits

the determination of the stress and displacement fields in the case of antiplane deforma
tion with a nonlinear deformation law (5), if the solution of the corresponding problem
for Hooke's law is known.

Indeed, if we know the function ( = ((w) from the solution of the linear problem.
we can find the function z = z(w, w) by means of integrating equation (15) and obtaining
the solution to the given problem with the nonlinear deformation law (5). In this case.
the contours, limiting the regions under consideration in the planes ( and z, will be
somewhat different. However, the solution contains arbitrary parameters by selection
of which we can prescribe beforehand some typical dimensions of contours.

4. SOLUTION OF SOME PROBLEMS

4.1. Semip/ane with two notches

Let us consider the problem of antiplane deformation of a prism, the cross section
of which is a semiplane with two oval notches close to s~micircles (Fig. 2). The shear
stress Lx = L cy acts at infinity. The complex potential, solving the corresponding linear
problem is taken as

(17)

c,
lJ

FIG. 2.

(18)

(19)
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Here the following notation is introduced:

199

(20)

(21)

The values t and eare determined by expressions

t2 = t oo {[1 +{J(J-li+J-l~-Af-A~)F+4{J2(AIJ-l1 +A2J12)2},

(J
2{J(AIJ11 +A2J12)

~n = 2 2 2 2'
1+ {J(J11 +J12- AI -)'2)

The maximum value of shear stress r at any point is found from (11). The functions cP
and ljJ are determined by the equations

cP = too[~+{J(AI +A2)],

and the longitudinal displacement will be

(22)

(23)

In the '-plane, corresponding to the Hooke's law case, the boundary is determined by
the equation

ljJ(~, 11) = o. (24)

The parametric equation of the boundary in the physical plane z is obtained by
substituting the values of ~, 11, which satisfy equation (24), into equation (19). In the case
under consideration in the '-plane, the rectilinear sections of the boundary OBI' AlA
and BD are described by equation 11 = 0 and the curvilinear arcs BtCtA t and ACB by
equation

(25)

These are the so-called Persey's curves which are the trace of the intersection of a
torus with a plane which is parallel to its axis. We are interested in the case when these
curves do not merge and do not touch each other. Therefore the parameters IX and {J
must be subjected to the inequality

(26)

As there is a symmetry with respect to the 11-axis in the (-plane and the y-axis in the
z-plane, it is sufficient to discuss only points with positive abscissae.

The abscissae of points B and A will be

(27)

and the coordinates of point C of the curvilinear contour which is most distant from the
~-axis have the following magnitudes

(28)
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In the z-plane the curvilinear parts of the boundary will have a somewhat different form.
However, the parameters ()( and fJ can be chosen in such a way as to fix, for example,
the positions of points A and B.

Let us give a numerical example which illustrates the obtained solution, For computa
tion the values t ex) = 1,0, n = 0,2, ()( = 2,1224, fJ = 1-1155 were chosen, and the abscissae
of points A and B are then equal to 1·0 and 3,0, respectively. In this case the depth of
the notch was 1·029 at the point with abscissa 2·082. The concentration factor reaches
here the maximum value of 1,89, which is 10% less than in the case of one semicircular
notch. The distribution of stress r along the boundary contour and also along the straight
lines x = 0, x 2·082 is shown in Fig. 3; the family of equal displacement Jines <p const.
and the trajectories of stress ljJ = const. is given in Fig. 4.

5,17 .:r

FIG. 3.
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FIG. 4.
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4.2. Semiplane with an oval hole
If we substitute in previous formulae ia instead of a, we shall obtain formulae giving

the solution of the problem for the semiplane with an oval hole (Fig. 5).

1/

B
®

C, C

A

lJ lJ
~ 0 J:

<M

FIG. 5.

The relations (18), (21H23) do not change, but expressions (19) will become

x = ~-n2t~{~+2P(A.t +)'2)-P2 ~2(~P-(5'1)

1(13 '3 3' 2 3' 2) 1 ( J.ll J.l2)~}+3' AI + tt2- AlJ.ll - tt2J.l2 -2(;3 arctan Al - arctan A,2 ~ ,

Y = '1+n2t;'{'1+2P(fLl+J.l2)+P2 [- :2('1P+~(5)

1 3 3,2 2 1 I (A~+fL~)J}+ 3'(fLl + J.l2 - 3AlfLl - 3A2J.l2) + 4a3 n Ai + fLi '

(29)

where p and b are expressed in terms of As and fLs' as in formulae (19), but the functions
I.s and fLs have another form, namely

+a-IJ
J.ll,2 = e+(IJ+a)2' (30)

4.3. The strip with two notches

Now we shall consider the problem of the strip with two oval notches close to semi
circles (Fig. 6). The complex potential corresponding to the linear problem is taken as

w(O = ('0(( +Pcoth an (31)

f M=-

®

D

FIG. 6.
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where t x' a and 13 are real parameters, which must be determined later. The integration
of equation (19) gives

z = (-n 2t; ~ + IJ(2+afJli,-~ri'~' (32)

or, after separating the real and imaginary parts,

x = ~-n2t; r~+f3(2+ap)),- a~2;.(;.2_3Il2)J

r ] (33)
y = 17+nt~tlJ+IJ(2+afJ)ll- a~2 p(3;.2_p2~.

(35)

(34)
- sin 2all

The following notation is introduced here

v = coth aC

. sinh 2a~
I. = ---------, II =

2(cosh2a~-cos2 alJ) 2(cosh2 a~-cos2 all)'

The quantities t and e are determined by formulae

t2 = t~ {[ t +ali(l + Il2 ;,2j]2 +4a2fJ2;. 2p2},

2a R).J1tan () = -,--_,--1'_
I + afJ(1 + 112 - 2f

The modulus of the stress vector r is found from equation (11), the longitudinal displace
ment w is

(36)

and the functions ¢ and t/J are written in the form

(37)

(38)

In the (-plane the equation of the straight section of the contour will be lJ = 0, and the
curvilinear section ACB is described by equation

fJ sin 2all
11=-

2 cosh2 ae cos 2 all'

(39)

The abscissae of points A and B have the form

1e? 2 = ± -cosh - \/(1 + afJ).. a ~

The ordinate of point C is found from equation

11* = fJ cot all*' (40)

The upper boundary contour of the strip is the mirror image of the lower one but for its
determination the function t/J(~, 11) should be equated to a nonvanishing constant. To
obtain the boundary contour in the z-plane, the corresponding values of eand 11 must
be substituted into (19) and (20). By appropriately choosing the magnitudes of para
meters a and Pone can get, for example, the width of the strip and the depth of the notch.
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FIG. 7.

Z/l :c

The solution obtained will be illustrated now with a numerical example. For calcula
tions t", = 1,0, n = 0'2, IX = 0'8168, f3 = 1'4017 are assumed. The width of the strip is
then equal to four times the depth of the notch, and the notch diameter at the root is a
factor of 1·82 times its depth. At the point C the concentration factor was a maximum
and was equal to 2·265. In Fig. 7 the stress distribution r along the contour and the
straight line x 0 was plotted. The family of lines of equal displacement </J = const.
and the stress trajectories l/J = const. are shown in Fig. 8.

!I

4,fJ2,0

tf)o,tJ ""ll5 ""!f/ tNft iN/! t/J=lJ,f #-$ ""43 t/J.o/l "',4,5 "'=5,0 f/J>5,J t/J=M t/J'# t/J=7,0

2,d V=~

'1'=1,5

FIG. 8.

4.4. Semiplane with periodically repeated notches (Fig. 9)

The formulae, which represent the solution of the problem mentioned, can be obtained
from the solution of the previous problem after the substitution of a by ia. Then equation
(31) will have the form

w«() = taO<' +Pcot a().

The integral of equation (15) will be

z = ,-n2t~ [t + f3(2 - a(3)v - a~2vl
(41)

(42)
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FIG,9.

or, after separating the real and imaginary parts

x = ~-nZt~ r~+p{2-aP)A- a~ZA{2- 3JlZl
[
' ap2 :l

y = ~+nZt~ ~+P{2-aP)t-t-3Jl(3),Z-IIZ~.

However, v, ), and Jl are here different, namely

(43)

v = cot a',

_ sin 2a~/: = ,~.-

. 2{sinZ a~ + sinhz a~)'

-sinh 2a/l
11 = '--------;;------,...-;;-

2{sinz a~+sinhza~l'

(44)

The values t, eand ware determined by the equations

t Z = t;,{[l-apO +),Z Jlz)]Z+4a2pz2t-t z},
(45)

and the functions c/> and r/J are expressed in terms of ), and t-t with the aid of equations (37)

4.5. Generalization
If the complex potential of the linear problem for some notches has the form

(v ~ Ii,)
w(0 = Ix \(, + s~I (_.:.~~ ,

where to(> as and #s are parameters, the integration of the basic equation OS) gives

z = ,-n2t~{'+2 t (isvs-t t #;v;
s~ 1 s~ I

Iff [2(-(&s+&r) - 2#s#r I Vs]}-----ppvv +~-- n-
( - _ - )Z s r s r (- _ N )3 r,

S.T = las ar (lr \As ¥ r
s*-r

and equation (16) results in

.k .k

t2 = t;,{[l + I (t-t;-)';)#s]Z+4[ I Ps)'sJls]Z}'
s=: 1 s= 1

,.t

2 ps)'st-ts
tan 0 = -----'~....-- ......- ......

1+ I {3iJl; - A;)
s~ 1

(46)

(47)

(48)
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The functions <p and t/J have the form

205

k

<p = t ,,(~ + I fJs)'s)'
s~ 1

.k'

t/J = (,:Jf1 + I fJslls)'
s~ 1

(49)

Here, for convenience, the following notation is introduced

Vs = )'s + ills' s = 1, 2, ... , ,iV'
(50)

• ~ - C(~ C(~ -lJ
I·s = (~C(~)2+(f1-C(~)2' Ils = (~-IX~)2+(f1-IX~)2'

In formulae (46H50) the number ,t' is the number of holes or notches, too determines
the external load; the parameters as and /3s characterize the geometry of the notches.
Even though IXs and /3s influence both the diameters and the position of the notches, yet
IX

s
determines the position of the notches to a considerable degree and /3s determines

their diameters.
Formulae, representing the solution of problem 4.1 are obtained from the expressions

(46H50), where A' = 2, 1X1 = IX = -1X2, /31 = /32 = fJ and IX = ii, /3 = {j. Solution of the
problem 4.3 can be obtained from the same formulae by passing to the limit as ,IV ---> oc.
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ZusammenfaSSllllg-In dem vorliegenden Aufsatz werden die Probleme der antiplanen Verformung im Faile
einer besonderen. nicht-linearen Spannungs-und Beanspruchungsabhangigkeit theoretisch untersucht, und zwar
fUr eine Halbebene mit zwei Einschnitten, fUr eine Halbebene mit einer Offnung, fUr eine Halbebene mit
periodiseh sich wiederholenden Einsehnitten und fiir einen Streifen mit zwei Einsehnitten.

Die Linearisierung der Gleichungen erfolgt mit Hilfe der Chaplygin'schen Transformation. wie dieses
bereits von Sokolovsky [5] durchgefiihrt wurde. Die Losungen werden mittels zahlenmassiger Berechnungen
und Kurven erliiutert.

A6CTpaKT B HaCTmuueH pa60Te TeOpeTH'leCKH HCClle.llyt<HCJI 1aila'lH 06 aHTHnJlOCKOli ile<jlopMauHH llJlJl
nOJlynllocKocTIl C ilByMlI BbITO'lKaMIl, .llJlJl nOJlynJIOCKOCTIl C OTBepcTHeM, ilJlJl nOJIynJlocKoCTH C
nepIlO.llIl'lecKIl nOBTOpJllOlUHMHCli BblTO'lKaMH HilJIli nOJIOCbl C ilByMll BblTO'lKaMIl B clly'Iae CneUllaJlbHOrO
BHila HeJIIlHeliHOli 3aBHCIlMOCTH HanplilKeHHe--ile<jlopMauHll . .llJIJI JIHHeapll3aUHH ypaBHeHHli HCnOJIb10BaHO
npeo6pa30BaHHe 4amlblrilHa UK, KaK 'nO C)leJIaHO COKOJlOBCKHM (5). PeUJeHlili HJIJlIOCTPHPYIOTCll
'lHCJleHHbIMIl paC'leTaMH II rpa<jlHKal\lIi.
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